Closing today: 4.1(1) and 4.1(2)
Closing Wed: 4.3
Closing Fri: 4.4

4.3 Classifying Critical Points

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{y}^{\prime}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$
horiz. tangent	zero
increasing	positive
decreasing	negative
vertical tangent, sharp corner, or not continuous	does not exist

Key, big, essential observation
Let $y=f(x)$ have a critical number at
$x=a$; if $f^{\prime}(x)$ changes from...

1. ...positive to negative, then a
local maximum occurs at $x=a$.
2. ...negative to positive, then a
local minimum occurs at $x=a$.
This is called the first derivative test.

Example:

1. Find and classify the critical numbers for

$$
y=x^{3}+3 x^{2}-72 x
$$

2. Find and classify the critical numbers of

$$
y=x^{4}-2 x^{3}
$$

3. Find and classify the critical numbers of

$$
y=x^{2 / 3}
$$

4. Find and classify the critical numbers of

$$
y=\frac{x^{3}}{x^{2}-1}
$$

The $\mathbf{2 d}^{\text {nd }}$ Derivative

$$
y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d}{d x}\left(f^{\prime}(x)\right)
$$

$=$ "rate of change of first derivative"

Terminology
If $f^{\prime \prime}(x)$ is positive,
then the slope of $f(x)$ is increasing and we say $f(x)$ is concave up.

If $f^{\prime \prime}(x)$ is negative, then the slope of $f(x)$ is decreasing and we say $f(x)$ is concave down.

A point in the domain of the function at which the concavity changes is called an inflection point.

Example: Find all inflection points of

$$
y=x^{4}-2 x^{3}
$$

Summary:

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{y}^{\prime \prime}=\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$
possible inflection	zero
concave up	Positive
concave down	Negative
possible inflection	does not exist

Big Observation:
If a graph is concave up at a critical number, then it is a local minimum.

If a graph is concave down at a critical number, then it is a local maximum.

This is called the $2^{\text {nd }}$ derivative test.

