Closing today: 4.1(1) and 4.1(2)

Closing Wed: 4.3

Closing Fri: 4.4

4.3 Classifying Critical Points

y = f(x)	$\mathbf{y}' = \mathbf{f}'(\mathbf{x})$
horiz. tangent	zero
increasing	positive
decreasing	negative
vertical tangent,	
sharp corner, or	does not exist
not continuous	

Key, big, essential observation

Let y = f(x) have a critical number at

- x = a; if f'(x) changes from...
- 1. ...positive to negative, then a **local maximum** occurs at x = a.
- 2. ...negative to positive, then a **local minimum** occurs at x = a.

This is called the <u>first derivative test</u>.

Example:

1. Find and classify the critical numbers for

$$y = x^3 + 3x^2 - 72x$$

2. Find and classify the critical numbers of

$$y = x^4 - 2x^3$$

3. Find and classify the critical numbers of

$$y = x^{2/3}$$

4. Find and classify the critical numbers of

$$y = \frac{x^3}{x^2 - 1}$$

The 2nd Derivative

$$y'' = f''(x) = \frac{d}{dx}(f'(x))$$

= "rate of change of first derivative"

Terminology If **f''(x) is positive**, then the **slope of f(x) is increasing** and we say f(x) is **concave up**.

If **f''(x) is negative**, then the **slope of f(x) is decreasing** and we say f(x) is **concave down**.

A point in the domain of the function at which the concavity changes is called an **inflection point**. Example: Find all inflection points of

$$y = x^4 - 2x^3$$

Summary:

1		
y = f(x)	$y^{\prime\prime}=f^{\prime\prime}(x)$	
possible inflection	zero	,
concave up	Positive	
concave down	Negative	
possible inflection	does not exist	

Example: Find all critical numbers of

 $y = 2 + 2x^2 - x^4$ and classify them using the 2nd

derivative test.

Big Observation:

If a graph is **concave up at a critical number**, then it is a **local minimum**.

If a graph is **concave down at a critical number**, then it is a **local maximum**.

This is called the 2nd derivative test.